The Complexity of Positive Semidefinite Matrix Factorization

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The complexity of positive semidefinite matrix factorization

Let A be a matrix with nonnegative real entries. The PSD rank of A is the smallest integer k for which there exist k × k real PSD matrices B1, . . . , Bm, C1, . . . , Cn satisfying A(i|j) = tr(BiCj) for all i, j. This paper determines the computational complexity status of the PSD rank. Namely, we show that the problem of computing this function is polynomial-time equivalent to the existential ...

متن کامل

Algorithms for Positive Semidefinite Factorization

This paper considers the problem of positive semidefinite factorization (PSD factorization), a generalization of exact nonnegative matrix factorization. Given an m-by-n nonnegative matrix X and an integer k, the PSD factorization problem consists in finding, if possible, symmetric k-by-k positive semidefinite matrices {A, ..., A} and {B, ..., B} such that Xi,j = trace(AB) for i = 1, ...,m, and ...

متن کامل

On the complexity of nonnegative matrix factorization

Nonnegative matrix factorization (NMF) has become a prominent technique for the analysis of image databases, text databases and other information retrieval and clustering applications. In this report, we define an exact version of NMF. Then we establish several results about exact NMF: (1) that it is equivalent to a problem in polyhedral combinatorics; (2) that it is NP-hard; and (3) that a pol...

متن کامل

Complexity of the positive semidefinite matrix completion problem with a rank constraint

We consider the decision problem asking whether a partial rational symmetric matrix with an all-ones diagonal can be completed to a full positive semidefinite matrix of rank at most k. We show that this problem is NP -hard for any fixed integer k ≥ 2. Equivalently, for k ≥ 2, it is NP -hard to test membership in the rank constrained elliptope Ek(G), i.e., the set of all partial matrices with of...

متن کامل

On the Complexity of the Positive Semidefinite Zero Forcing Number

The positive zero forcing number of a graph is a graph parameter that arises from a non-traditional type of graph colouring, and is related to a more conventional version of zero forcing. We establish a relation between the zero forcing and the fast-mixed searching, which implies some NP-completeness results for the zero forcing problem. For chordal graphs much is understood regarding the relat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2017

ISSN: 1052-6234,1095-7189

DOI: 10.1137/16m1080616